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Until modelling is complete, macromolecular structures are

re®ned in the absence of a model for some of the atoms in the

crystal. Techniques for de®ning positional probability distri-

butions of atoms, and using them to model the missing part of

a macromolecular crystal structure and the bulk solvent, are

described. The starting information may consist of either a

tentative structural model for the missing atoms or an

electron-density map. During structure completion and

re®nement, the use of probability distributions enables the

retention of low-resolution phase information while avoiding

premature commitment to uncertain higher resolution

features. Homographic exponential modelling is proposed as

a ¯exible, compact and robust parametrization that proves to

be superior to a traditional Fourier expansion in approx-

imating a model protein envelope. The homographic

exponential model also has potential applications to ab initio

phasing of Fourier amplitudes associated with macro-

molecular envelopes.
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1. The case for low-resolution distributions in partial
structure refinement and completion

Crystallographic partial structure re®nement and completion

is usually performed by omitting the questionable parts of the

structure and refraining as much as possible from building in

ill-de®ned density regions. If the starting phases are of poor

quality, the process of phase improvement by model building

is therefore slow, because some of the low-resolution posi-

tional information that is already available is not incorporated

until the position of the missing atoms is unambiguously

de®ned. In order to avoid locking in on an incorrect structure,

even the most likely clues or inspired guesses about the

position of the missing atoms are set aside, surrendering to the

fear of model bias.

One way of overcoming these dif®culties is the iterative

placement of atoms in the peaks of the uninterpretable

regions of the electron-density map, leading to a `hybrid

model' for the crystal structure that comprises the protein

model and free atoms (Perrakis et al., 1999). A different

strategy is described here, as implemented in the computer

program BUSTER (Bricogne, 1993, 1997), which uses a

Bayesian statistical model to merge consistently various

sources of crystallographic phase information. At any stage

during the phasing process, low-resolution real-space distri-

butions are used in BUSTER to provide a statistical descrip-

tion of the scattering from the parts of structures that cannot

be modelled reliably, either because they are weakly scattering

(missing or disordered residues) or because of their intrinsic

disorder (bulk solvent).



The main advantages of this procedure are: (i) the scaling of

the data to the model is robust and accurate; (ii) the danger of

biasing the re®nement towards the initial values given to the

parameters of the already traced atoms is less serious, because

the scattering from the missing atoms is accounted for in a

statistical sense; and (iii) from the low-resolution distribution

for the missing atoms a maximum-entropy distribution can be

derived; suitably scaled and thermally smeared, this is a

versatile alternative to conventional weighted difference

Fourier maps.

Before we examine closely how the real-space distributions

are computed (x4), we add a brief section de®ning the symbols

used throughout (x2) and a section containing the general

outline of the structural model as implemented in BUSTER

(x3).

2. Symbols used in this paper

In this paper, ®ve types of real-space distributions are dealt

with, all of which are handled in BUSTER as CCP4-format

maps sampled on a crystallographic grid with NX, NY and NZ

points along the crystallographic axes. We list here the

symbols for these distributions (omitting any subscripts), as an

aid to the reader.

q(x), a generic distribution in the crystallographic unit cell.

�(x), an indicator function, i.e. a binary mask whose values

are 0 or 1 only; V� is the fractional volume of the mask �(x);

when the latter is sampled on a crystallographic grid NX NY

NZ,

V� � �1=NX NY NZ�PNX

i�1

PNY

j�1

PNZ

k�1

��i; j; k�: �1�

m(x), an envelope, i.e. a positive everywhere and contin-

uous function, usually with low-resolution Fourier compo-

nents only; m(x) is normalized so that its average in the unit

cell is unity,

�1=V� R
V

m�x�d3x � 1; �2�

V being the volume of the unit cell; when sampling m(x) on a

grid,

�1=NX NY NZ�PNX

i�1

PNY

j�1

PNZ

k�1

m�i; j; k� � 1: �3�

p(x), a probability distribution, so that 0 � p(x) � 1;R
V p�x�d3x � 1.

�(x), an electron density, in e AÊ ÿ3 units.

Vertical bars denote the absolute value, |f(x)| = abs[f(x)];

angled brackets denote expectation value under a probability

density, hf(x)i =
R

P(x)f(x)dx; the asterisk stands for convo-

lution, (f * g)(x) =
R

f(x ÿ y)g(y)dy.

3. The structural model

The electron density at point x in the unit cell is written as the

sum of three contributions,

�tot�x� � �frag�x� � �rand�x� � �solv�x�; �4�
where �frag(x) is the electron density for the known fragment

of the structure for which the atomic positions are known with

a good degree of con®dence; �rand(x) is the density for the

atoms that are missing in the fragment and whose positions are

described using a probability distribution and a random atom

model (see x3.2); �solv(x) is the bulk solvent density. Here,

�tot(x) is on an absolute scale.

The model for the structure factor is clearly

Ftot�h� � F��tot�x���h� � Ffrag�h� � Frand�h� � Fsolv�h�; �5�
where the subscripts retain the meaning they have in (4).

Before we describe how the real-space distributions are

computed, the next three sections will say some more about

the individual components of the structural model.

3.1. The partial structure model

The atoms whose positions are known with a good degree of

con®dence are described by a set of conventional atomic

model parameters. Their positions, isotropic displacement

parameters (i.e. temperature factors) and occupancies can be

re®ned by maximum likelihood, using an interface to the

re®nement package TNT (Tronrud et al., 1987; Tronrud, 1997),

as previously described (Bricogne & Irwin, 1996). The stan-

dard stereochemical, geometrical and non-crystallographic

symmetry (hard and soft) restraints are handled in TNT.

During partial structure re®nement the probability distribu-

tion for the random atoms, as well as the bulk-solvent

distribution, are kept ®xed.

3.2. The missing structure model

The prior expectation about the position of the missing

atoms is cast in quantitative terms using an envelope mrand(x)

that is used as a positional prior distribution for the same

atoms; the calculation of mrand(x) is described in x4. As the

suf®x `rand' suggests, all the missing atoms are assumed to be

randomly distributed according to mrand(x).

Once the partial structure has been re®ned, a maximum-

entropy distribution qrand(x) for the missing atoms is

computed in the form

qrand�x� �
1

Z
mrand�x� exp

P
h

�h�h�x�
� �

; �6�

where Z is a normalization factor such that
R

Vqrand(x)d3x = 1,

�h are Lagrange multipliers and �h is the trigonometric

structure factor, i.e. the structure factor for a point scatterer at

rest,

�h�x� �
1

jGj
P
g2G

exp�2�ihSgx�: �7�

|G| is the number of elements of the space group G and

Sgx = Rgx + tg is the generic symmetry operation in G.

The calculation of qrand(x) is performed varying the �h

under the constraint of maximum entropy, as outlined in

Roversi et al. (2000).
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qrand(x) can be normalized and turned into a positional

posterior probability distribution. It shows the extent to which

the prior expectation mrand(x) is con®rmed or contradicted by

the observations. In the absence of noise and if the observa-

tions contained no information regarding the region of

interest, the ®nal probability distribution would coincide with

the (normalized) prior (1/Z)mrand(x) (because �h = 0 8 h). In

practice, both noise and signal in the data will cause the �h to

differ from zero and build features into qrand(x). The structure-

factor contribution to the structure factor from the missing

atoms is computed from qrand(x) using the sum of the scat-

tering factors for the same atoms,

Frand�h� � �rand�h� � F�qrand�x���h�; �8�
where �rand(h) is the sum of the scattering factors for the

missing atoms,

�rand�h� �
PNrand

j

fj�h� exp ÿhBij
d�2h

4

� �
: �9�

3.3. The bulk-solvent model

The bulk-solvent structure factor Fsolv(h) on the absolute

scale can be computed from the Fourier components of the

bulk-solvent density �solv(h), smeared by the solvent

temperature factor,

Fsolv�h� � F��solv�x���h� � exp ÿBsolv

d�2h

4

� �
: �10�

The bulk-solvent density is taken proportional to the bulk-

solvent envelope msolv(x),

�solv�x� � �solv �msolv�x�; �11�
where �solv and Vsolv are the electron density and volume of

the bulk solvent.

In BUSTER, the bulk-solvent envelope msolv (x) is never

handled as such, the macromolecular envelope mmacrom(x)

being used instead; mmacrom(x) is either computed from the

whole molecule atomic model [see x4.2, the volume Vmacrom(x)

being the volume of the whole binary mask �macrom(x)] or it is

computed starting from the density using the known solvent-

volume fraction (see x4.3).

Once mmacrom(x) is obtained, the Babinet principle,1 relating

the low-resolution Fourier components of two complementary

distributions msolv(x) and mmacrom(x), is used,

VsolvF�msolv�x���h� � ÿVmacromF�mmacrom�x���h�; �12�
so that

Fsolv�h� � ÿ�solvVmacrom �F�mmacrom�x���h�

� exp
ÿd�h� �2

4
Bsolv

� �
: �13�

4. Computing mrand(x)

We can now examine more closely how the real-space envel-

opes are computed; in particular, we discuss here the calcu-

lation of the envelope for the missing atoms, mrand(x). Similar

techniques can be used to compute the envelopes for the

whole macromolecule or for the bulk solvent.

As soon as an initial model is available, the prior distribu-

tion mrand�x� for the positions of the missing atoms can be

computed in three ways: (i) by excluding the missing atoms

from the regions already containing the partial structure

(uniform prior, x4.1), (ii) by using a trial atomic model for the

missing atoms (model-based non-uniform prior, x4.2) or (iii)

simply from the local ¯uctuation of the electron density (map-

based non-uniform prior, x4.3).

4.1. Uniform prior

The simplest choice for the missing atoms prior probability

distribution is to exclude them from the regions that already

contain a reliable atomic model: this brings into the statistical

model the notion that a number of atoms are missing and that

they are equally likely to be anywhere except where other

atoms have been placed already.

The uniform prior distribution is de®ned in three steps as

follows.

(i) A binary mask �a:u:
frag�x� is drawn around the known partial

structure; this step is performed using the program

NCSMASK (Collaborative Computational Project, Number 4,

1994). The masking radius Rfrag can be varied; the default for

Rfrag is 2.05 AÊ .

(ii) �a:u:
frag�x� is symmetry expanded to cover the whole cell;

this symmetry-expanded binary mask �frag(x) is negated to

obtain a binary mask �rand(x) for the random atoms,

�rand�x� � 1ÿ �frag�x�: �14�

(iii) �frag(x) is blurred by means of a convolution with an

isotropic Gaussian G(x; Brand) and normalized,

mrand�x� �
1

V�rand

� ��rand �G�Brand���x�; �15�

where the parameter Brand controls the width of the Gaussian

and therefore the slope of mrand(x) around the model used in

generating �a:u:
frag�x�.

The convolution in (15) is effected in reciprocal space, using

a set of periodized (`aliased') structure factors for mrand(x).

The use of aliased structure factors to sample thermally

smeared model densities on arbitrarily coarse crystallographic

grids has been described in the Appendix of Roversi et al.

(1998) and will not be detailed here.2

1 For a recent illustration of the use of the Babinet principle in bulk-solvent
correction, see Guo et al. (2000).

2 Suf®ce here to say that ®rst F [mrand(x)](h) is computed by taking the
products of F [�rand(x)](h) and F [G(x; Bfrag)](h); then, the set of
F [m(x)rand](h) are made periodic on the lattice reciprocal to the real-space
crystallographic grid. These aliased structure factors undergo Fourier
synthesis and mrand(x) is sampled on the desired grid; the aliasing ensures
that the mrand(x) distribution is positive everywhere and free from Fourier-
truncation artefacts.



We stress that this distribution is uniform outside the

regions occupied by the model, hence the name `uniform

prior', but its shape is not uniform; only in absence of any

partial model is this a truly uniform distribution throughout

the unit cell.

We also notice that if the bulk-solvent envelope is also

chosen to ®ll up all the space left empty by the macro-

molecular model, the missing atoms envelope and the bulk-

solvent envelope are overlapping. They can still differ for the

parameter B used in the blurring step (15).

4.2. Model-based non-uniform prior

Sometimes a rough guess is available as to the placement of

a subset of atoms, such as a protein loop or domain or a bound

ligand, but the model tentatively built for the same atoms is

questionable. An envelope mrand(x) can then be built around

these ill-de®ned atoms and the same atoms omitted from the

partial structure. The real-space picture of the crystal in this

case then comprises the bulk-solvent envelope, the atomic

model for the trusted traced atoms and the missing atoms

envelope. The latter is localized around the tentatively placed

atoms; it represents our prior expectation about their position

but does not retain any of the high-resolution details that are

being assessed.

The prior distribution is computed in four steps as follows.

(i) A binary mask �a:u:
macrom�x� is drawn around the complete

atomic model, including the parts that will be omitted; the

radius for this masking can vary between 2 and 4 AÊ , depending

on the degree of con®dence one wants to retain regarding the

omitted model (a tighter radius resulting in a distribution

highly localized around the omitted atoms).

(ii) A binary mask �a:u:
frag�x� is drawn around the part of

structure that is going to be retained and a binary mask for the

random atoms �a:u:
rand�x� is obtained from

�a:u:
rand�x� � �a:u:

macrom�x� � 1ÿ �a:u:
frag�x�

� �
: �16�

(iii) The �a:u:
rand�x�mask is symmetry expanded to the unit cell

to give �rand(x).

(iv) �rand(x) is blurred by means of a convolution with an

isotropic Gaussian G(x; Brand) and normalized as in (15).

4.3. Map-based non-uniform prior

Even when no atomic model is available, some rough idea

about the placement of the missing atoms can be retrieved

from the presence of high values of the local r.m.s.d. in noisy

electron-density maps.

The local average of the electron density (Wang, 1985;

Leslie, 1987) or its local ¯uctuation around the mean (Abra-

hams & Leslie, 1996; Abrahams, 1997) have been used to

perform phase improvement by density-modi®cation tech-

niques.

The BUSTER envelope is also computed by local variance

®ltering of a noisy density map. Local averaging is performed

by convolution with a Gaussian G(B), parametrized by a

Debye±Waller factor B, and a solid sphere mask S(R), para-

metrized by a radius R. These convolutions are used in two

®ltering operations that select high and low frequencies in a

distribution �(x),

�lo�B;R��x� � �� �G�B� � S�R���x� �17�
�hi�B;R��x� � ��ÿ �lo��x�: �18�

All the convolution steps are carried out in reciprocal space,

by calculation of a set of aliased structure factors (Roversi et

al., 1998), then Fourier-transformed to sample the density on

the required grid.

For the (optional) high-frequency ®ltering, the following

two measures of the local ¯uctuation around the local average

can be de®ned:

(i) the local average of the absolute value of the deviation

from the mean,

!�x� � �j�hi�B1;R1�j �G�B2� � S�R2���x�; �19�
(ii) the local r.m.s.d. from the local average,

!�x� � f��hi�B1;R1��2 �G�B2� � S�R2�g
1
2�x�: �20�

The radius of the sphere for the high-pass ®lter is typically

larger than the one for the low-pass ®lter in (19) and (20) (i.e.

R1 > R2).

The high-frequency ®lter is useful in those cases where map

Fourier components with D � R1 are either absent or cannot

be trusted; but it can be omitted if the lowest-resolution

features are correct; in this case, the following two local

averages can be computed, also by Fourier transforms:

(i) the local average of the absolute value of the density,

!�x� � �j�loj �G�B2� � S�R2���x�; �21�
(ii) the local r.m.s. deviation from zero of the density,

!�x� � ���lo�2 �G�B2� � S�R2��
1
2�x�: �22�

Once !(x) is available, mrand(x) should be obtained by

homographic exponential modelling as described in the

following section.

5. Homographic exponential modelling

We describe in this section a technique that affords a para-

metrization of low-resolution distributions and is used in

BUSTER for computing macromolecular envelopes from

noisy electron-density maps. The technique is a particular case

of homographic mapping of a function e(x),

e�x� ! a� b� e�x�
c� d� e�x� ; �23�

where a = c = d = 1 and b = 0, and e(x) is an exponential

e(x) = exp[!(x)]; therefore, we propose to call it homographic

exponential modelling.

The distributions obtained by homographic exponential

modelling can be handled as values on a crystallographic grid

and represent a new way of de®ning intrinsically `binary-like'

macromolecular envelopes that are continuous and not binary.

Alternatively, they can be parametrized with a ®nite set of
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coef®cients in the expansion of !, opening the way to ab initio

low-resolution phasing based on phase permutation for a few

coef®cients of !(x).

The potential of the homographic exponential modelling

for ab initio phasing of envelope Fourier coef®cients has been

investigated by G. Bricogne and M. Ramin (G. Bricogne,

unpublished results; Ramin, 1999). Here, we introduce the

technique and present the results of a test study, aiming at the

assessment of the number of Fourier coef®cients of !(x) that

are needed to satisfactorily reconstruct a given m(x) when a

homographic exponential model is adopted.

5.1. The Fermi±Dirac distribution

The problem of de®ning a low-resolution envelope for the

macromolecule based on an electron-density map can be

restated in the form of assigning to each pixel in the map a

probability of belonging to the bulk solvent, which we can

write psolv(x). Correspondingly, pmacrom(x) = 1 ÿ psolv(x) is

then the probability that the pixel at x belongs to the

macromolecular volume.

It is clear that we are dealing with each pixel as an entity

that can be in one and one only of two possible states (pixel in

the bulk solvent/pixel in the macromolecule), like a fermion

whose spin can be either of �1
2; an analogy can be drawn with

the occupancy distribution function for a system consisting of

a ®nite number of fermion particles with a given total energy.

This occupancy distribution function fFD(E) follows a Fermi±

Dirac distribution, depending on the temperature parameter

�FD and on the chemical potential �FD (Reif, 1965),

fFD�E� � 1=f1� exp��FD�Eÿ �FD��g: �24�
The chemical potential �FD arises from the requirement that

the number of fermions is ®nite. At temperatures close to zero,

the low-energy states are occupied [probability fFD(E) ' 1]

until the total number of fermions is reached; this de®nes the

Fermi level (or Fermi energy �FD) of the system. The distri-

bution quickly tails off to zero as the energy level increases;

the states having energy higher than the Fermi level have zero

occupancies unless the ratio of the energy gap (Eÿ �FD) over

the mean thermal energy 1/�FD is small enough to permit some

excitation.

By analogy, we can adopt some measure !(x) of the local

¯uctuation of the electron density as an `envelope potential

energy' and take � as inversely proportional to the r.m.s. error

of the electron density (Blow & Crick, 1959),

1

�
/P

h

"h 1ÿ FOM2
h

ÿ �
F2

h; �25�

FOMh being the ®gure of merit,

FOMh � �hcos 'hi2 � hsin 'hi2�1=2; �26�
computed from the current phase probability distribution

P('h).

Where !(x) is large with respect to the density r.m.s. error,

it is highly unlikely that pixel x belong to the bulk solvent. So,

for the probability that the pixel belong to the solvent, we can

take

psolv�x� /
1

1� expf��!�x� ÿ ��g : �27�

The value of � depends on the number of pixels that de®ne

the solvent region (or the solvent-volume fraction); it can be

computed by histogramming the !(x) function and choosing

for � the value of !(x) that will give the correct number of

pixels within the solvent, starting from the pixels where the

¯uctuation is lowest, and including all the pixels with

increasing values of the local ¯uctuation, until the desired

solvent fraction is achieved.

The probability that the pixel at x belongs to the macro-

molecule is then

pmacrom�x� � 1ÿ psolv�x� /
1

1� expfÿ��!�x� ÿ ��g : �28�

5.2. Homographic exponential modelling of missing atoms
envelopes

This section describes the homographic exponential

modelling of macromolecular envelopes starting from noisy

maps. In particular, a description is given of the calculation of

an homographic exponential model for the missing atom

envelope in the presence of the density for the partial struc-

ture �frag�x� (see x4.3).

Once the local density ¯uctuation !(x) has been obtained

along the lines described in x4.3 and its histogramming has

given the value of �macrom that corresponds to the appropriate

Figure 1
Porcine pancreatic elastase, [100] section of the model envelope m(x).
Section: 57.973 � 75.32 AÊ . The centre of the section is the macro-
molecule's centre of gravity. The density was obtained by masking with a
radius of 2 AÊ around the model and blurring with a Gaussian temperature
factor B = 100.



solvent fraction, one has the homographic exponential model

for the whole macromolecular envelope,

qmacrom�x� �
1

1� expfÿ�macrom�!�x� ÿ �macrom�g
; �29�

the value of �macrom being proportional to the reciprocal r.m.s.

error of the starting density (25). Then, to exclude the frag-

ment region from the prior-probability distribution for the

random atoms, a homographic exponential model of the

fragment density is needed. The local ¯uctuation !frag(x) can

be computed based on �frag(x) as outlined in x4.3; the values of

�frag and �frag are computed from the r.m.s. error of the

fragment model density and its fractional volume, as seen

above. The homographic exponential model for the fragment

density is then

qfrag�x� �
1

1� expfÿ�frag�!frag�x� ÿ �frag�g
: �30�

Finally, the homographic exponential model for the missing

atoms envelope is obtained by imposing that the pixel lies in

the whole macromolecule envelope but not in the fragment

envelope,

qrand�x� � qmacrom�x� � 1ÿ qfrag�x�
� � �31�

mrand�x� �
VR

V qrand�x� d3x
� qrand�x�: �32�

5.3. A simple test

We describe here a simple calculation that investigates the

behaviour of homographic exponential modelling of a known

envelope m(x) under truncation of its Fourier spectrum, and

compares it with a traditional ®nite-resolution Fourier

expansion of the same m(x).

If m(x) is a given envelope and we intend to parametrize it

using an homographic exponential model (28), we ®rst map

m(x) to the (0, 1) open interval by linear scaling,

m0�x� � m�x� ÿmin m�x�� �
max m�x� ÿmin m�x�� � : �33�

Then, we can compute the !(x) from

!�x� � 1

�
log

m0�x�
1ÿm0�x�
� �

� �: �34�

Fourier analysis of !(x), truncation of its Fourier coef®cients

at resolution d and Fourier synthesis of the truncated set of

coef®cients lead to the resolution-truncated !d(x) distribution

!d�x� � FfXd�h� � F�!�x���h�g�x�; �35�
where the truncation of the Fourier spectrum of !(x) at

resolution d in (35) is performed by multiplying it by the

indicator function Xd(h),

Xd�h� � 1 if h � d;

� 0 if h < d:
�36�

The homographic exponential, resolution-truncated mHE,d(x)

is then

m0HE;d�x� �
1

1� expfÿ��!d�x� ÿ ��g
; �37�

mHE;d�x� �
VR

V m0HE;d�x� d3x
�m0HE;d�x�: �38�

We note here that for this particular test the actual values of �
and � are irrelevant, provided the same values are used in (34)

and (37).

The conventional Fourier expansion of m(x), with trunca-

tion at resolution d, reads

mFT;d�x� � FfXd�h� � F�m�x���h�g�x�: �39�

mHE,d(x) and mFT,d(x) differ from m(x) because of the reso-

lution truncation; mFT,d(x) has no Fourier components past

d AÊ , while mHE,d(x), computed from the same number of

Fourier coef®cients, possesses extra-resolution owing to the

exponential step.
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Table 1
Porcine pancreatic elastase: real-space correlation coef®cients between a
model envelope m(x) and its reconstructions by truncated homographic
exponential modelling [mHE,d(x)] and truncated Fourier synthesis
[mFT,d(x)].

Resolution d (AÊ ) (No. coeffs) hCC(m, mHE,d)i hCC(m, mFT,d)i
30 (7) 0.594 0.604
25 (12) 0.634 0.662
20 (22) 0.760 0.758
15 (51) 0.840 0.832

Figure 2
Porcine pancreatic elastase, [100] section of the 15 AÊ truncated Fourier
reconstruction of the model envelope, mFT,d=15AÊ (x). Size and orientation
as in Fig. 1. The density was obtained by truncating the Fourier spectrum
of the model density at 15 AÊ [51 data; see (39)].
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In the following, we describe the test reconstruction of a

model envelope for porcine pancreatic elastase (PPE; Meyer

et al., 1986; Schiltz et al., 1997). The model envelope m(x) was

generated as explained in x4.2, using the PDB-deposited

structure, with a masking radius R = 2 AÊ and a blurring factor

B = 100. A conventional Fourier truncation and a truncated

homographic exponential model were used to reconstruct the

model envelope, as explained above. As noted in x2, all

envelopes have been normalized so that their average in the

unit cell is unity.

Table 1 reports the real-space overall correlation coef®-

cients between the model envelope and its Fourier-truncated

and homographic exponential-truncated reconstructions. The

Fourier-truncated envelope gives marginally higher CCs when

the resolution used for truncating the coef®cients is lower than

25 AÊ : this is because the amplitudes and phases of the very few

coef®cients retained are exact for this envelope and not for

mHE,d(x). Overall, the values of the CCs are very similar for

the two methods, mainly because the correlation coef®cients

are dominated by the lowest resolution components, which are

essentially correct in both maps.

More informative is the visual inspection of sections of the

envelopes. Fig. 1 shows a section in the [100] plane of the PPE

crystal for the model envelope; Figs. 2 and 3 show the same

section of the 15 AÊ , Fourier-truncated and homographic

exponential truncated envelopes, respectively, mFT,d=15AÊ (x)

and mHE,d=15AÊ (x). In Fig. 2, mFT,d=15AÊ (x) shows the well known

Fourier artefacts arising from truncation: negative ripples,

peaky features and a smeared out protein±solvent boundary.

In Fig. 3, mHE,d=15AÊ (x) is positive everywhere, has a ¯atter

protein ceiling, a steeper slope at the solvent±protein

boundary and a ¯atter solvent ¯oor, with few oscillations. The

solvent regions match the ones in the model envelope.

Table 2 contains the correlation coef®cients between

Fourier coef®cients of the model PPE envelope and the

Fourier coef®cients of the 15 and 20 AÊ truncated homographic

exponential model. Fig. 4 plots the same Fourier coef®cients in

resolution ranges. The ¯uctuations observed are typical of the

spectrum of macromolecular envelopes; still, the amplitudes of

the Fourier components of mHE,d=15AÊ (x) retain an average

correlation coef®cients as high as 0.306 up to 8.2 AÊ , owing to

the extrapolation achieved by the exponential step.

6. Conclusions

The macromolecular envelope mrand(x) is a continuous

distribution and not a binary mask; even regions of low density

(or low-density r.m.s.d., if a variance ®lter is used) can there-

fore be retained within the envelope, with a (possibly small)

non-zero probability. The subsequent maximum entropy

modulation of the envelope itself therefore has a chance of

Figure 3
Porcine pancreatic elastase, [100] section of the 15 AÊ truncated
homographic exponential reconstruction of the model envelope,
mHE,d=15 AÊ (x). Size and orientation as in Fig. 1. The density was obtained
by truncating the ! spectrum at 15 AÊ (51 data) and recomputing the
homographic exponential model (37).

Table 2
Porcine pancreatic elastase: reciprocal-space correlation coef®cients
between the Fourier components F [m(x)](h) of a model envelope and
the Fourier components F [mHE,d(x)](h) of its truncated homographic
exponential reconstruction.

hCC{F [m(x)](h), F [mHE,d(x)](h)}i
Resolution (AÊ ) (No. coeffs) d = 15 AÊ d = 20 AÊ

14.1 (61) 0.982 0.920
10.0 (93) 0.170 0.125
8.2 (125) 0.306 0.087
7.1 (136) 0.118 ÿ0.007
6.3 (151) 0.042 ÿ0.040
5.8 (166) 0.154 0.079

Figure 4
Porcine pancreatic elastase. Fourier components of the model envelope
hF [m(x)](h)i and of its 15 AÊ truncated reconstructions hF [mFT(x)](h)i
and hF [mHE(x)](h)i. Fs were averaged in groups of ten data each. The
correlation coef®cients hCC{F [m(x)](h), F [mFT(x)](h)}i are not shown
because they are 1.0 for d > 15 AÊ and zero for d < 15 AÊ .



building up density in the same regions. This has potential in

structure completion by density-modi®cation techniques. The

only other published example of solvent ¯attening using real-

space continuous probability distributions is the Gaussian

distribution described by Terwilliger (1999). The map-based

algorithm implemented in BUSTER (x5) differs from the past

published ones in that the macromolecular envelope is a

homographic exponential model and therefore can be para-

metrized with a few coef®cients of ! while still retaining its

`binary-like' character.
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